INEQUAÇÕES LOGARÍTMICAS
As inequações logarítmicas são todas aquelas que apresentam logaritmos. A incógnita,
nesses casos, pertence ao logaritmando ou à base.
As inequações logarítmicas são todas aquelas que apresentam logaritmos. A incógnita,
nesses casos, está no logaritmando e/ou na base. Vale lembrar que um logaritmo possui o
seguinte formato:
loga b = x ↔ ax = b,
*a é a base do logaritmo; b é o logaritmando e x é o logaritmo.
Para resolver inequações logarítmicas, aplicamos as propriedades operatórias dos
logaritmos e os conceitos tradicionais de resolução de inequações. Assim como fazemos
com as equações logarítmicas, é importante verificar as condições de existência dos
logaritmos (tanto a base quanto o logaritmando devem ser maiores que zero).
Ao desenvolver as inequações logarítmicas, podemos alcançar duas situações:
1º) Desigualdade entre logaritmos de mesma base:
loga b < loga c
Temos aqui dois casos a serem analisados: se a base for maior do que 1 (a > 1), podemos
desconsiderar o logaritmo e manter a desigualdade entre os logaritmandos, isto é:
Se a > 1 , então loga b < loga c ↔ b < c
Se, em contrapartida, a base for um número entre 0 e 1 (0 > a > 1), ao resolver a inequação
logarítmica, devemos inverter a desigualdade e estabelecer uma inequação entre os
logaritmandos, ou seja:
Se 0 > a > 1 , então loga b < loga c ↔ b > c
2º) Desigualdade entre um logaritmo e um número real:
loga b < x
Se, ao resolver uma inequação logarítmica, depararmo-nos com uma desigualdade entre
um logaritmo e um número real, podemos aplicar a propriedade básica do logaritmo,
mantendo intacto o símbolo da desigualdade:
loga b < x ↔ b < ax
ou
loga b > x ↔ b > ax
Vejamos alguns exemplos de resolução de inequações logarítmicas:
Exemplo 1: log5 (2x – 3) < log5 x
Devemos verificar as condições de existência dos logaritmos:
2x – 3 > 0
2x > 3
x > 3/2
x > 0
Temos uma desigualdade entre logaritmos de mesma base que é maior do que 1. Podemos
então manter a desigualdade apenas entre os logaritmandos:
log5 (2x – 3) < log5 x
2x – 3 < x
2x – x < 3
x < 3
Nesse caso, a solução é .
Exemplo 2: log2 (x + 3) ≥ 3
Primeiramente, verificamos a condição de existência do logaritmo:
x + 3 > 0
x > – 3
Nesse caso, há uma desigualdade entre um logaritmo e um número real. Podemos resolver
o logaritmo da forma convencional, mantendo a desigualdade:
log2 (x + 3) ≥ 3
x + 3 ≥ 23
x + 3 ≥ 8
x ≥ 8 – 3
x ≥ 5
A solução é .
Exemplo 3: log1/2 3x > log1/2 (2x + 5)
Verificando as condições de existência dos logaritmos, temos:
3x > 0
x > 0 2x + 5 > 0
2x > – 5
x > – 5/2
Nesse exemplo, há uma desigualdade entre logaritmos de mesma base que é menor do
que1. Para resolvê-la, devemos inverter a desigualdade, aplicando-a entre os
logaritmandos:
log1/2 3x > log1/2 (2x + 5)
3x < 2x + 5
3x – 2x < 5
x < 5
Nesse caso, a solução é .
Nenhum comentário:
Postar um comentário